a2 United States Patent

Nishikawa

US009218554B2

US 9,218,554 B2
Dec. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54) IMAGE PROCESSING APPARATUS, IMAGE
PROCESSING METHOD, AND STORAGE
MEDIUM

(71) Applicant: CANON KABUSHIKI KAISHA,
Tokyo (JP)

(72) Inventor: Naoyuki Nishikawa, Kawasaki (JP)

(73) Assignee: Canon Kabushiki Kaisha, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/334,058

(22) Filed: Jul. 17, 2014
(65) Prior Publication Data
US 2014/0327923 Al Nov. 6, 2014

Related U.S. Application Data

(63) Continuation of application No. 13/406,222, filed on
Feb. 27, 2012, now Pat. No. 8,804,145.

(30) Foreign Application Priority Data
Mar. 7, 2011 (JP) oo 2011-048654

(51) Imt.ClL

GO6K 15/02 (2006.01)

GO6T 11/40 (2006.01)

GO6F 3/12 (2006.01)

GO6F 15/80 (2006.01)
(52) US.CL

CPC GO6K 15/1894 (2013.01); GOGF 3/1298

(2013.01); GO6K 15/1822 (2013.01); GO6K
15/1847 (2013.01); GOG6K 15/1849 (2013.01);
GOGK 15/1857 (2013.01); GO6T 11/40
(2013.01)

(58) Field of Classification Search
CPC ittt GOG6F 3/1298
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,967,392 A * 10/1990 Werneretal. 345/505
5,008,838 A * 4/1991 Kelleheretal. 345/422
6,529,289 B1* 3/2003 Konno etal. 358/1.17
7,925,473 B2* 4/2011 DeWitt etal. 702/186
2005/0149936 Al* 7/2005 Pilkington 718/102

2005/0149937 Al* 7/2005 Pilkington 718/102

2006/0285682 Al* 12/2006 Sarangarajanetal. 380/28
2008/0001953 Al* 1/2008 Nagaoetal. ... 345/502
2008/0215817 Al* 9/2008 Nonogaki et al. 711/130
2010/0302564 Al* 12/2010 Ozawa 358/1.9
2011/0235105 Al* 9/2011 Ozawaetal. ... 358/1.15
FOREIGN PATENT DOCUMENTS

Jp 2009-241485 A 10/2009

Jp 2011-034139 A 2/2011

* cited by examiner

Primary Examiner — Beniyam Menberu

(74) Attorney, Agent, or Firm — Canon USA., Inc. IP

Division
(57) ABSTRACT

A method for image processing executed by an image pro-
cessing apparatus includes sequentially receiving PDL data
and transferring a figure included in the PDL data to process-
ing in a subsequent stage, assigning edge extraction process-
ing as a unit of processing for extracting edge information for
each transferred figure, merging the edge information
extracted from each figure, spooling the merged data in a tile
format as intermediate data, and reading out the intermediate
data in the tile format from spooling process and performing
processing on each tile to generate a pixel from the interme-
diate data.

18 Claims, 16 Drawing Sheets

PDL INTERPRETER

DATA ANALYSIS

[SYSTEM INFORMATION

SHITCHING

THREAD
CONTROL

v
DATA RECEPTION|
DATA ANALYSIS (SIMPLE SPCOL) |

SPOGL

»-' VECTORIZATION PROCESSING ,

THREAD
CONTROL

-+ EDBE EXTRACT ION-1

EDGE EXTRAGT{ON-2

DATA MERGE
(TILE DATA)

EDGE EXTRACT ION-2) oy e e

| EDGE EXTRACTION-3 ‘%

... (T}
y]
EDGE EXTRACTION-3 %} DATA)

U.S. Patent Dec. 22, 2015 Sheet 1 of 16 US 9,218,554 B2

FIG. 1

US 9,218,554 B2

A
A\

Sheet 2 of 16

Y

Y

Dec. 22, 2015

o - -
oY
-~) v KON Y 1¥Q
Ho
WOH HYHEONd
. g WOY
A - T "I WOY iNod
9140 « S - Wy
D8 - - - Ndo
=
b0}

U.S. Patent

Z 91

U.S. Patent Dec. 22, 2015 Sheet 3 of 16 US 9,218,554 B2

(
e,

3

pe
k¢

.‘
¥q

FIC

US 9,218,554 B2

Sheet 4 of 16

Dec. 22, 2015

U.S. Patent

| vivemes | | vive3sa | | viva a3 |

4

&

-4

SN1SS4004Ed
NOTEDWH XS 3004

SN1SSA00Ud
NOTIDVELIXE 3003

ON15S300dd
NOTIDYHIYE 4003

3

&

&

NOTDIY
Bl LB

NO1O3Y
ANPRMA LA

NO194Y
EUHLETE

4

_fgid 10dil

JHNB 14 1NN

v oold

US 9,218,554 B2

Sheet 5 of 16

Dec. 22, 2015

U.S. Patent

AN DN

£ DNISSH00Ed 411

& SNISSHO0Md 1L

EONISSI00dd 31

-

00ds |

SN

=
Wivae 1L —
493 YiVd

ﬂui!f

471 BHINYHEQ

ONISTH004d 40V DY
e-NOTIOVEIXd dBGd CJHRBi4
MOV LY 4004 (QHRBid
E-NCHEDYHED 48904 1 danBid

N
a@mwmmmwm ¥ivQ

w
diidddid N ¥id

U.S. Patent Dec. 22, 2015 Sheet 6 of 16 US 9,218,554 B2

Fi16.6

k2

U.S. Patent

Dec. 22, 2015

Sheet 7 of 16 US 9,218,554 B2

{_ START PR?CESS%&G p

~
I

™~y

{

vl

¥

INTTIALLZATION PROCESSING

~-511

¥

SCAN LINE LOGP PROCESSING

~-517

‘ $13
""EDGE DATA NG

ST NERD UPDATING
?

<\i\\/

7 YES

50 EDGE DATA

YES
¥

St4

L
N 516
/J
DELETE DATA FROW

EDGE DATA LIS

X SORTING, UPDATE TABLE

3

¥

¥

SCAN TN X-DIRECTION

¥

AGCESS 10 NODE

¥

UFDATE DATA VALUE
y

DECRENENT COUNTER

"':\\“

¥
m\

- A-BIRECTION
SCAN CQ?PLETEE e

MO Y-DIRECT

SCAN CQ?FLEFEQMMMwW

{ON

YES

&1

NO

(END OF PROCESSING)

US 9,218,554 B2

Sheet 8 of 16

Dec. 22, 2015

U.S. Patent

MO0 GHY INITNO

HER I

407100 ONY 3H1ING

\

Y m\‘

ANPIIRO LOVELXS

g old

e

o BTN
Lo S @0 [T N
¢ WG QAL | Lol
(Gno¥D Yiva STLYNIGHOOD)
EVTE A0 [eon T
e QAT | TN
F R B (LA LN o
P (A0 [1on
14 40 (dNOYD YIYE STLYNIGHOOD)
00D QY

£ dunoid

S A g T

b 3unaid

US 9,218,554 B2

Sheet 9 of 16

Dec. 22, 2015

U.S. Patent

D9g
0%¢ 091
SOVANHL ORL AY hﬂ>wV
SWO0PS 40 DNISSIO0MG 3IM3K3 .
av5 091

S G0L=0p5+081

ONISSIO0Nd J0MIN NOLIOVELXS 3803

BN1SS3208d Id

Q4141600 81 BNISSI00Ed 0d

380448 3IaViS s

ON1GSH008d NOTLOVHLIXE J80d

LX) swoplg
J403 Wl

34 G0/
¥ JHONIS

6 D14

US 9,218,554 B2

Sheet 10 of 16

Dec. 22, 2015

U.S. Patent

S 0Z1=0L1+01

(JWiig T) su g8t
4400 YID0 W

(118 2) 3 002
4600 QynD =

(116 1) =0 gfg
U Wil s

(AWIL0 1) SW Q0L
4600 NS 8

S8 QO7=061+01 061 Q,
4 v Q w.
S¥ OLE=096+0} 098 Q 51
o5 091
s 00/ =055+081
GNISSIONNA IOMIW NOTIOVHLIXI 3963 BNISSIN0NG Hd

h JONYRUD
S3H00 40 438NN

01 D1d

US 9,218,554 B2

Sheet 11 of 16

Dec. 22, 2015

U.S. Patent

&

N

|

~

LB

0 10K 51 3400

11014

Sy P O e v

P R

ON 8405

ALTATLOY QvduHL 40 SOUYIS
3403 Y150

US 9,218,554 B2

Sheet 12 of 16

Dec. 22, 2015

U.S. Patent

N1OND

T\

/

£ DNISSA00E4 41

& DHISEH00dd 4111

(1110048

SIRUENEY
DY Yivd

L ONISE400dd 11

: ™

10045
)

7101090 on

S-NOLL4903Y YivE -

b
L v

SIA AN
o
&

J/

¢l Did

o~NOTLOVHIXE 40043

A

2

G i I-NDIOVMIND d9an e
s i . o I0MINDD
-NOTLOVHLXE 3003 e TEELEDD
0 ! SISATYNY
kﬂfw Yi¥Q

el HOILE30R VIVE

% 471 SNINYHG

dALHdHAINT T

4 L5

i
NOLIOVEIXT 3003

US 9,218,554 B2

Sheet 13 of 16

Dec. 22, 2015

U.S. Patent

(NOTIVZIN0IDEA)
DR1SSED0Nd

LIS YYD

134090

NI - 7
wwmwmwmmmm& g

SNIESHAN0NL NOFIVZIH0IOH4
40 DNISSH00Ud 14T [Vavd

S GRE=00+G 1Y

S OR1=07 1+

JO¥LS INSNOESENS O
OHESRI00dd HOS RBILSY

v

J

| S §

WYL 2% sWogDd

¢
I 008 ONODIS?

HOSSIO0Nd J0n-vion B

o1 L 6D s o8t
(LN 0T 151 D)

HOSSTO0NG IH0D-vion B

qeT *old

Vel Dld

US 9,218,554 B2

Sheet 14 of 16

Dec. 22, 2015

U.S. Patent

(¥1vqQ
JHL
404K

¥ivd

=

s

~f

s

E-NOTIOVEINT 4804

-

Y190 3D oy

o-HOTIOVHENS 3804

&

S04 Yivd

m..ﬁriif
|-NOLLOVHLNT I90 e Ty
4B TOHINGS
ON1SST00Ud NG LYZ1HOLOTA [+ m&mmmm
\Uri,,wvi) 4
(_ 700ds \v
N ./././‘
.

NG 1d30T Y1vE
{

(0045 31408 L

SISATYHY Yivd

E-NOIDVELIXNS JU3

f-NOTLOVHIXd 35403

E-HOTIDYHIXE 3804

kY

TOULROD

o

NOTid=0ds YiVD

&

3

NOLLVIRMOANT WAIBAS

OMIHDLIES

¥

SISATIVRY YiVQ

ddl g i

4

(¥3uHl

&

SISATYNY
Y1¥(

vl old

[

US 9,218,554 B2

Sheet 15 of 16

Dec. 22, 2015

U.S. Patent

su goi=00i+gi+0z |90 ﬁ 11104

| mm—

8U (07=061+01 061 : "
B =000+ Q9e w o1
oy 381

SUDOL=0VSr08

(QW1Lg G sw 5ol
40D YioU®

(WELS O 8w o0z
B Wil m

(WILG 1) S8 DG
400 Wil m

(GHEID L sw 0o/
4600 dBRiS

BRISSI00Ud 30430 NOTIOYHIXT 3803

SNISSH00Hd iGd

g1l

D1d

| JUNYREO 3
54800 40 HAEAON

U.S. Patent Dec. 22, 2015 Sheet 16 of 16 US 9,218,554 B2

FIG. 16
POL IRTERPRETER
SYSTEM
DATA ANALYSIS ENFORBATION
JL
w SWITCHENG 4
¥ ¥ ‘?‘
STNGLE-CCRE DUAL-CORE-QUAD-CORE | MANY -CORE
(P PROCESSING CPU PROCESSING | GPU PROGESSING
,é A &
¥ ‘?
GOMMON COMMON
PROCGESSING UNIT L PROCESSING UNIT (=
1 2

US 9,218,554 B2

1

IMAGE PROCESSING APPARATUS, IMAGE
PROCESSING METHOD, AND STORAGE
MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a Continuation of U.S. application Ser.
No. 13/406,222 filed Feb. 27, 2012, which claims the benefit
of Japanese Patent Application No. 2011-048654 filed Dec.
Mar. 7, 2011, which is hereby incorporated by reference
herein in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an image processing appa-
ratus, an image processing method, and a storage medium.

2. Description of the Related Art

Conventionally, a rendering method that extracts outline
information (also referred to as edge information) from coor-
dinates information of a figure and forms an image based on
the outline information is widely used in order to draw a
figure. Such a method is discussed in Japanese Patent Appli-
cation Laid-Open No. 4-170686. The outline information is
expressed by straight lines. A digital differential analyzer
(DDA) algorithm is a known graphics algorithm used for
rasterization of lines (see David Rogers, “Procedural Ele-
ments for Computer Graphics” McGraw-Hill Education).

FIG. 1 illustrates an example of conventional renderer pro-
cessing. In FIG. 1, an input figure is divided into bands before
it is processed. A typical problem in graphics processing that
occurs in such system is the reduction of the rendering speed
when many graphic objects are input. Japanese Patent Appli-
cation Laid-Open No. 2003-51019 discusses a method for
increasing the processing speed by dividing input figures into
bands as illustrated in FIG. 1 and assigning an independent
processing unit (thread) to each band.

According to a conventional renderer, edge data of a scan
line is generated at the time when coordinates information or
line segment information such as a path of the figure is trans-
ferred to the renderer. Thus, each figure cannot be indepen-
dently processed. On the other hand, if a figure is divided into
band units, parallel processing can be performed since each
region is independent. According to this method, the execu-
tion of parallel processing can be efficiently performed under
certain conditions. However, not all cases can be efficiently
processed.

For example, if one figure exists in two adjacent band
regions A and B arranged one above the other, parallel pro-
cessing cannot be executed in that state. In order to perform
processing in such a state, it is necessary to supply the figure
(replicate data of the figure and transfer the obtained data) to
each of the two band regions. Thus, sufficient high speed
processing cannot be expected if Page Description Language
(PDL) data including a number of figures at the band bound-
ary regions is processed by band parallel processing.
Although it is possible to adjust the break position of the
bands considering the arrangement of the objects, since there
will be figures on the border of regions regardless of the
adjustment, it will not fundamentally solve the problem

Further, if only one thread can be assigned to one band as
a basic unit of processing, and if the distribution of objects is
extremely unbalanced (e.g. several hundreds of objects in one
band), high speed processing cannot be expected.

SUMMARY OF THE INVENTION

The present invention relates to realizing high-speed ren-
dering processing.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to an aspect of the present invention, an image
processing apparatus includes a receiving unit configured to
sequentially receive page description language (PDL) data
and transfer a figure included in the PDL data to processing in
a subsequent stage, an assigning unit configured to assign
edge extraction processing as a unit of processing for extract-
ing edge information for each figure transferred from the
receiving unit, a merging unit configured to merge the edge
information extracted for each figure, a spool unit configured
to spool the data merged by the merging unit in a tile format
as intermediate data, and a generation unit configured to read
out the intermediate data in the tile format from the spool unit
and perform processing on each tile to generate a pixel from
the intermediate data.

Further features and aspects of the present invention will
become apparent from the following detailed description of
exemplary embodiments with reference to the attached draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate exemplary
embodiments, features, and aspects of the invention and,
together with the description, serve to explain the principles
of the invention.

FIG. 1 illustrates an example of a processing result of a
conventional renderer.

FIG. 2 illustrates an example of a hardware configuration
of'an image processing apparatus.

FIG. 3 illustrates an example of assignment of a processing
unit (thread) for each figure.

FIG. 4 is a conceptual drawing of figures where edge
extraction processing is independently applied to each of the
figures.

FIG. 5 illustrates an example of a software configuration
(system configuration) of the image processing apparatus.

FIG. 6 illustrates the edge extraction processing of a tri-
angle.

FIG. 7 is a flowchart illustrating an example of scan line
processing.

FIG. 8 illustrates data flow of “edge extraction processing”
and “data merging” that merges data which has been
extracted.

FIG. 9 illustrates how time is reduced by PDL processing
and edge extraction processing (including merge processing).

FIG. 10 illustrates changes in performance when the num-
ber of cores used in the configuration is increased in a first
exemplary embodiment.

FIG. 11 illustrates an activity state of a program internal
thread of an octa-core processor.

FIG. 12 illustrates occurrence of a bottleneck in the “data
reception” processing.

FIGS. 13A and 13B illustrate “data reception” processing
processed in multiple stages (a plurality of stages).

FIG. 14 illustrates an example of changing processing to be
selected according to information of a number of available
cores notified from the system.

FIG. 15 is a graph illustrating changes in performance with
respect to the number of cores according to a second exem-
plary embodiment of the present invention.

FIG. 16 illustrates an example of a system configuration
when the processing flow is changed according to the number
of cores.

DESCRIPTION OF THE EMBODIMENTS

Various exemplary embodiments, features, and aspects of
the invention will be described in detail below with reference
to the drawings.

US 9,218,554 B2

3

FIG. 2 illustrates an example of a hardware configuration
of an image processing apparatus according to a first exem-
plary embodiment of the present invention. In FIG. 2, a cen-
tral processing unit (CPU) 101 executes an operating system
(OS) and a program of general application loaded from a
read-only memory (ROM) 103 or a hard disk 111 to a random
access memory (RAM) 102, and realizes the functions of the
software and the processing of the flowchart described below.

The RAM 102 functions as a main memory and a work area
of the CPU 101. A keyboard controller (KBC) 105 controls
key input from a keyboard 109 or a pointing device (not
illustrated). A cathode ray tube controller (CRTC) 106 con-
trols a display of a CRT display 110.

A disk controller (DKC) 107 controls access to a hard disk
(HD) 111 or a flexible disk (FD) that stores a boot program,
various application programs, font data, and user files. A
printer controller (PRTC) 108 controls exchange of signals
between the image processing apparatus and a connected
printer (not illustrated). A network controller (NC) 112 is
connected to a network and executes control processing
regarding communication with other apparatuses connected
to the network.

According to the present exemplary embodiment, func-
tions of the image processing apparatus, which are described
below, are realized by software. However, each function can
be realized by a dedicated hardware device installed in the
image processing apparatus.

Although the CPU 101 according to the present exemplary
embodiment is a multi-core CPU, the image processing appa-
ratus can include a plurality of CPUs.

The renderer according to the present exemplary embodi-
ment assigns a unit of processing (thread) for each figure as
illustrated in FIG. 3. Although the figures are arranged at
positions (absolute coordinates) on a page, each of the figures
can be mapped to individual relative coordinates. In other
words, the absolute coordinates are converted into relative
coordinates having the upper left corner of a circumscribed
rectangle of the figure as the point of origin. Then, edge
extraction processing of each region can be performed.

FIG. 4 is a conceptual drawing of the edge extraction
processing independently applied to each figure. The edge
extraction processing is performed for each figure on the
page. The edge information extracted from each figure is
mapped again to the coordinates of the page and merge pro-
cessing is performed. The processing of each figure can be
independently performed since there is no dependence
among the processings. In other words, after data of the
figures is input, a plurality of threads can be assigned to the
edge extraction processing and the data merge processing
(data merging) for each figure. The processing of the threads
is mapped to each unit (CPU core) that executes the process-
ing. Since each core executes the processing in a time-inde-
pendent manner, the operations can be parallel performed.

Further, the renderer according to the present exemplary
embodiment includes a core management mechanism that
determines the assignment of the core based on a result of a
data analysis (e.g., PDL-related information). Thus, the ren-
derer executes parallel processing according to the control of
the core management mechanism. If many cores can be used
on the system, in order to enhance the efficiency of the pro-
cessing, PDL-related information, which is basic information
of'each figure, is extracted when PDL data reception process-
ing is performed. Then, the renderer performs mapping of
processing such as vectorization to pipeline processing of the
subsequent stage so that data processing load can be distrib-
uted. Thus, when the number of cores is increased, the per-
formance can be improved in a scalable manner.

20

30

40

45

55

4

Next, a basic configuration of a raster image processor
(RIP) system having a parallel processing structure will be
described.

FIG. 5 illustrates an example of a software configuration
(system configuration) of the image processing apparatus. As
illustrated in FIG. 5, PDL data is transferred to the RIP system
side via a drawing interface. On the RIP system side, a “data
reception” processing block receives a PDL object such as a
figure, a character, or an image. After the data is stored in an
internal spooler (not illustrated) as appropriate, the data is
transferred to the processing unit in the subsequent stage.

Ifa PDL objectis a figure, the “data reception” transtfers the
data to edge extraction processing (thread) illustrated in FIG.
5. On the other hand, if a PDL object is an image, the “data
reception” transfers the data to image processing (thread). If
a plurality of figures exists on a page, the edge extraction
processing is assigned to each figure.

Each of the edge data pieces extracted by the edge extrac-
tion processing is transferred to data merging processing
(thread) of the subsequent stage as appropriate. When the
edge data is merged on the page (subjected to overlapping
processing), the format of the data is changed to tile data and
the tile data is written to a spooler as RIP intermediate data.
The RIP intermediate data in the tile format is further trans-
ferred to tile processing (thread) of the subsequent stage.
Then, pixel rendering processing of each tile is performed by
the tile processing (thread). The processing of each tile is
executed in a time independent manner.

FIG. 6 illustrates edge extraction processing of a triangular
figure. In FIG. 6, an arrow pointing right in the horizontal
direction indicates a scan line. The scanning is performed
from top to bottom of a circumscribed rectangle of the tri-
angle. FIG. 6 illustrates a state in which a scanning of a third
line is being performed and two edges of a side AB and a side
AC are extracted.

FIG. 7 is a flowchart illustrating an example of the scan line
processing.

In step S11, “edge extraction processing” performs initial-
ization processing of figure data which has been input. During
this processing, the “edge extraction processing” determines
the range of the scanning and sets parameter groups of loop
numbers for processing in the subsequent stage.

Instep S12, the “edge extraction processing” starts the loop
processing of the scan line in the Y direction.

In step S13, the “edge extraction processing” acquires data
of the figure on the current scan line (data of the side that
forms the outline of the figure) and determines whether edge
information of the figure on the scan line (current edge data
list) needs to be updated. If the current edge data list does not
need to be updated (NO in step S13), the processing proceeds
to step S17. If the current edge data list needs to be updated
(YES in step S13), the processing proceeds to step S14.

In step S14, the “edge extraction processing” determines
whether an edge is to be added to or deleted from the current
edge datalist. If an edge is to be added (e.g., the scan line goes
over the outline of the figure) (YES in step S14), then in step
S15, the “edge extraction processing” adds the data so that the
data is in an ascending order in the X direction. The added
data is referred to as a node. The nodes are connected on the
list.

On the other hand, if the edge data is to be deleted (e.g.,
scan line does not go over the outline of the figure) (NO in step
S14), then in step S16, the “edge extraction processing”
deletes the corresponding data from the edge data list.

In step S17, the “edge extraction processing” extracts the
edge information in the X direction of the current scan line. In
step S18, the “edge extraction processing” sequentially

US 9,218,554 B2

5

accesses each node in the edge data list. The edge information
is configured such that data value (DA) of a scan line of a
current value (Y value) is updated from information such as a
slope of a line segment. In step S19, the data value is updated.

In step S20, the counter is decremented for the X loop. In
step S21, the “edge extraction processing” determines
whether the X direction loop has been completed.

Steps S17 to S21 are processing of a loop in the X direction.
Whereas steps S12 to S22 are processing of a loop in the Y
direction. By this double loop, outline information (edge
information) of a plane figure can be extracted.

FIG. 8 illustrates flow of data regarding the “edge extrac-
tion processing” and processing of “data merging” used for
merging the extracted edge data, in the processing of the basic
system illustrated in FIG. 5.

In FIG. 8, data of each of FIGS. 1 and 2 includes a group
including figure type information indicating a type of the
figure and coordinates data ofthe figure as entity. Edge data is
extracted from these data pieces by the “edge extraction pro-
cessing” described above with reference to the processing
flow in FIG. 7. Since processing of the FIGS. 1 and 2 is
independently performed by different threads, edge data
pieces of the two figures are simultaneously extracted. This
processing is expressed as threads 1 and 2 in FIG. 8. During
this processing, paint information inside the outline of the
figure is simultaneously extracted by color information
extraction processing (not illustrated).

In the thread 3, merge processing of the edge data and color
information extracted in the threads 1 and 2 is performed by
“data merging”. For example, if the FIG. 2 is painted by a
single red color (opaque) and the FIG. 1 is painted by a single
blue color (opaque), and further, if the FIG. 1 is arranged over
the FIG. 2, the color of the overlapping portion will be blue,
which is the color of the top layer. In this state, color infor-
mation of two colors (i.e., blue and red) is stored. On the other
hand, regarding the processing region of the thread 3 (rectan-
gulartile in FIG. 8), merging of edge data of the regions of the
FIGS. 1 and 2 is performed. (For example, unnecessary edge
data due to overlapping will be deleted.)

According to the processing method of the present exem-
plary embodiment, the number of color information pieces to
be stored regarding regions may be increased depending on
the overlapping state. For example, if the FIG. 1 is painted by
a single red color (opaque) and the FIG. 2 is painted by a
single blue color (transparent), and further, if the FIG. 2 is
arranged over the FIG. 1, according to calculation of trans-
parent merge, the color of the overlapping region is calcu-
lated. For example, since blue and red merge into purple,
according to the processing in the thread 3, color information
pieces of red, blue, and purple is stored.

FIG. 9 is a graph illustrates how time is reduced in the PDL
processing and the edge extraction processing (including
merge processing). If the CPU includes only a single core,
even if a plurality of threads is used, each thread is only
processed according to time-division processing. Thus, sub-
stantially, high-speed processing cannot be achieved. In FIG.
9, the time required for the PDL processing corresponds to the
processing time of the “PDL interpreter” and the “data recep-
tion” in FIG. 5. Further, the time required for the edge extrac-
tion corresponds to time of the “edge extraction processing”
and the “the merging processing” in FIG. 5.

According to the graph, if the system uses a single-core
CPU, a total of 700 milliseconds is required for processing of
one page. In other words, it takes 160 milliseconds to execute
the PDL processing and 540 milliseconds to execute the
following edge extraction processing.

10

15

20

25

30

35

40

45

50

55

60

65

6

Further, if the system uses a dual-core CPU, since the PDL
processing and the edge extraction processing can be
executed independently, the edge extraction processing can
be started before the processing of the PDL figures for one
page is finished. For example, the edge extraction processing
can be immediately started when the processed data is trans-
ferred from the PDL processing of the first figure. Further, the
edge extraction processing can be started after a plurality of
figures is stored for a fixed period of time.

According to the example in FIG. 9, the edge extraction
processing is started 10 milliseconds after the start of the PDL
processing. As the edge extraction processing proceeds, the
PDL processing simultaneously generate the data necessary
for the edge extraction processing. In addition, The edge
extraction processing is performed by dividing into two pro-
cessing groups. Since two cores operate at the same time, the
total edge extraction processing can be accelerated. When the
PDL processing is performed, one core performs the PDL
processing and the edge extraction processing in a time-
division manner, but the other core performs only the edge
extraction processing (the role can be changed between the
cores). Thus the total processing time can be reduced.

FIG. 10 illustrates changes in performance when the num-
ber of cores used in the configuration of the first exemplary
embodiment is increased. As illustrated in FIG. 10, if pro-
cessing time of one page by a single-core CPU is 700 milli-
seconds, the time can be reduced to 370 milliseconds (speed-
ing up of 1.9 times) for a dual-core CPU, 200 milliseconds
(speeding up of 3.5 times) for a quad-core CPU, and 180
milliseconds (speeding up of3.9 times) for an octa-core CPU.
Thus, according to the configuration of the first exemplary
embodiment, the performance (RIP processing speed) can be
improved according to the number of cores.

Considering a case where the number of cores is further-
more increased, the internal processing state when the num-
ber of cores is increased has been analyzed.

FIG. 11 illustrates an example of an activity state of pro-
gram internal threads of an octa-core CPU. FIG. 11 is a thread
activity graph. In FIG. 11, the black-banded portions indicate
the time the CPU core is operating the thread and the blank
portions indicate the idle time of the core. As can be seen from
the circles in FIG. 11, the cores (core numbers 8, 7, and 6) are
frequently in the idle state (idle time period). If a quad-core
CPU used under the same condition (same data load) is ana-
lyzed, such a state is not observed.

Further, a bottleneck at the processing of “data reception”
in FIG. 12 has been found according to the analysis. At the
data reception, if the received figure consists only of straight
line data, the data of the figure can be received immediately.
However, if the received figure includes curve data, straight
line processing referred to as vectorization will be performed.
It a number of figures with many curves are input, processing
speed of processing that can be normally processed at a high
speed will be reduced. As a result, data cannot be transferred
in time to the edge extraction processing in the subsequent
stage. [fthe edge extraction processing cannot receive data, it
cannot start the processing and waits in the idle state until the
data is transferred.

Thus, according to a second exemplary embodiment, pro-
cessing of “data reception” is divided into processing blocks
of multiple stages as illustrated in FIG. 13B. In this manner,
overall performance can be furthermore improved. In FIG.
13B, a PDL object is transferred to the data reception pro-
cessing via the drawing interface. The data reception process-
ing first determines whether vectorization is necessary. Then,
only when the vectorization is necessary, the figure is marked,

US 9,218,554 B2

7

and the data is spooled in a data list 1. The data list 1 is an
example of a first data storage unit.

According to the second exemplary embodiment, as illus-
trated in FIG. 13B, the vectorization processing itself is
executed at time different from the time “processing 17 is
executed. In other words, the vectorization processing is
executed at independent time by a task of a different thread in
the subsequent stage. In the vectorization processing in the
subsequent stage, data that needs vectorization is appropri-
ately picked up from the data pieces in the data list 1, and the
vectorization is performed. (This operation can be executed
in a plurality of threads as illustrated in FIG. 13B.) The
vectorized data is stored in a data list 2 and transferred to the
edge extraction processing in the subsequent stage. In other
words, the figure which is not marked and stored in the data
list 1 as well as the figure stored in the data list 2 are trans-
ferred to the edge extraction processing in the subsequent
stage. The data list 2 is an example of a second data storage
unit.

Asillustrated in FIG. 13 A, even if the number of CPU cores
is increased to eight, data pieces are continuously supplied to
the edge extraction processing. As a result, parallel process-
ing can be constantly performed, and the overall performance
can be improved.

As described with reference to FIG. 13B, the processing
performance can be improved if a multi-stage processing
block is applied to “data reception” and an octa-core CPU is
used. Next, a case where the multi-stage processing block is
applied to a quad-core CPU will be described.

As illustrated in FIG. 13A, when data is processed by an
octa-core CPU, 35 milliseconds (20 milliseconds+15 milli-
seconds) is used for overhead of data reception. If this is
applied to a quad-core CPU, since four cores are in full
operation for the edge extraction processing, the speed of the
parallel processing cannot be improved. This means that even
if the efficiency of the data supplying side is improved,
improved performance of the system cannot be expected.
Thus, when a quad-core CPU is used, a processing system
including a multi-stage configuration such as the one illus-
trated in FIG. 13B is not desirable. Thus, according to the
second exemplary embodiment, the processing algorithm is
changed according to whether the number of cores is four or
eight.

FIG. 14 illustrates an example where different processing
is selected according to information of a number of available
cores transferred from the system side. More specifically, if
the number of cores is one to four, the configuration of the first
exemplary embodiment on the left block in the drawing is
used. Ifthe number of cores is eight or more, the configuration
onthe right block in the drawing is used and the data reception
processing is performed according to the multi-stage process-
ing algorithm illustrated in FIG. 13B. The number of cores
four is an example of the predetermined core number.

FIG. 15 illustrates changes in performance when the num-
ber of cores used in the configuration of the second exemplary
embodiment is changed. As illustrated in FIG. 15, if process-
ing time of one page by a single-core CPU is 700 millisec-
onds, the time can be reduced to 370 milliseconds (speeding
up of 1.9 times) for a dual-core CPU, 200 milliseconds
(speeding up of 3.5 times) for a quad-core CPU, and 135
milliseconds (speeding up of 5.2 times) for an octa-core CPU.
Thus, according to the configuration of the second exemplary
embodiment, the performance (RIP processing speed) can be
furthermore improved according to the number of cores.

According to the second exemplary embodiment, although
processors up to the octa-core CPU have been described, the
number of cores of the CPU is not limited. Further, although

10

15

20

25

30

35

40

45

50

55

60

65

8

the data reception processing illustrated in FIG. 5 is described
as the processing of a processing unit having the multi-stage
configuration regarding an octa-core CPU, the processing
unit can be applied to different processing so long as a similar
effect can be obtained. In other words, the processing unit can
be applied without dependence on any specific processing.

If amulti-core CPU with cores more than eight is used, the
time required for the edge extraction can be furthermore
reduced. In that case, although new processing flow that
allows data reception processing of higher speed can be intro-
duced, processing can be started after data is fully accumu-
lated on the supply side. If the number of cores is increased,
the balance of input data and output data of the processing
unit that processes data needs to be adjusted. The data balance
can be adjusted based on experiments and can also be
adjusted based on a theoretical model or on a prediction.
When the number of cores is increased, the processing of each
block itself can be realized by a different method.

FIG. 16 illustrates an example of a system configuration
whose processing flow is changed according to the number of
cores. Regarding the processing flow which changes the pro-
cessing according to the number of cores, a function block
which is commonly used by each processing flow is set in
modules to minimize the program size. Further, as another
conceivable case, if data of many pages, whose processing
load are light, is input in a quad-core CPU, the CPU core itself
will be idle for a considerable amount of time. In such a state,
many processing-completed pages are accumulated in the
spooler, and accelerated processing of the page is not neces-
sary in order to keep the engine output speed. Thus, an arbi-
tration function (a system that can adjust idle time according
to the core number) can be provided in advance.

According to the above-described exemplary embodi-
ments, regardless of the arrangement of the figures, a core can
be equally assigned to each of the figures. Accordingly, effi-
ciency of the processing can be improved (reduction of use-
less data transfer and core wait time). As a result, even if a
page of high processing load that includes many graphics is
input, the rendering speed can be effectively improved.

The above-described configuration can be used for a
printer apparatus, a display device, and an image output
device.

Aspects of the present invention can also be realized by a
computer of a system or apparatus (or devices such as a CPU
oran MPU) that reads out and executes a program recorded on
a memory device to perform the functions of the above-
described embodiments, and by a method, the steps of which
are performed by a computer of a system or apparatus by, for
example, reading out and executing a program recorded on a
memory device to perform the functions of the above-de-
scribed embodiments. For this purpose, the program is pro-
vided to the computer for example via a network or from a
recording medium of various types serving as the memory
device (e.g., computer-readable medium).

While the present invention has been described with refer-
ence to exemplary embodiments, it is to be understood that
the invention is not limited to the disclosed exemplary
embodiments. The scope of the following claims is to be
accorded the broadest interpretation so as to encompass all
modifications, equivalent structures, and functions.

What is claimed is:

1. A image processing method executed by an image pro-
cessing system including a plurality of CPU cores and a
storage configured to store a plurality of program codes, each
program code being used alone for executing a plurality of
preceding type processes and executing, in parallel, a plural-
ity of following type processes each of which is executed

US 9,218,554 B2

9

using a different one of results of the preceding type pro-
cesses, the method comprising:

selecting, from among the stored plurality of program
codes, one program code according to a number of avail-
able cores of the CPU cores; and

controlling, based on the selected program code, at least
one core among the available cores to execute the plu-
rality of preceding type processes, and a first core and a
second core among the available cores except the at least
one core to execute each of a following type process
which is executed using a result of a first preceding type
process and a following type process which is executed
using a result of a second preceding type process, in
parallel,

wherein a first program code which the selecting selects
from among the plurality of program codes according to
the number of the available cores being a first number
larger than a second number causes, in the controlling, a
larger number of cores among the available cores to
execute the plurality of the preceding type processes
than a second program code which the selecting selects
from among the plurality of program codes according to
the number of'the available cores being the second num-
ber causes.

2. The method according to claim 1, wherein the storage is
configured to store a common program code, and each of the
stored plurality of program codes is executed with the com-
mon program code stored in the storage.

3. The method according to claim 1, wherein each of the
stored plurality of program codes is executed for a print job.

4. The method according to claim 3, wherein the print job
is a job for printing based on data described in a Page Descrip-
tion Language.

5. The method according to claim 1,

wherein the preceding type process is an analysis process
for receiving and analyzing a figure,

wherein the following type process is an edge extraction
process for extracting an intersection of the figure ana-
lyzed by the preceding type process and a scan line as an
edge,

wherein each of the stored plurality of program codes
includes both of a code for the analysis process and a
code for the edge extraction process, and

wherein, in the controlling, each of the first and second
cores is controlled to execute in parallel, based on the
code for the edge extraction process, a different edge
extraction process.

6. The method according to claim 1, wherein each of the
plurality of following type processes which is executed using
a different one of the results of the preceding type processes
is executable by either the first core or the second core.

7. An image processing system comprising:

a plurality of CPU cores;

a storage configured to store a plurality of program codes,
each program code being used alone for executing a
plurality of preceding type processes and executing, in
parallel, a plurality of following type processes each of
which is executed using a different one of results of the
preceding type processes;

a selection unit configured to select, from among the stored
plurality of program codes, one program code according
to a number of available cores of the system; and

a control unit configured to control, based on the selected
program code, at least one core among the available
cores to execute the plurality of preceding type pro-
cesses, and a first core and a second core among the
available cores except the at least one core to execute

5

10

15

20

25

30

35

40

45

50

55

60

65

10

each of a following type process which is executed using
aresult of a first preceding type process and a following
type process which is executed using a result of a second
preceding type process, in parallel,

wherein a first program code which the selecting selects

from among the plurality of program codes according to
the number of the available cores being a first number
larger than a second number causes by the control unit a
larger number of cores among the available cores to
execute the plurality of the preceding type processes
than a second program code which the selecting selects
from among the plurality of program codes according to
the number of the available cores being the second num-
ber causes.

8. The image processing system according to claim 7,
wherein the storage is configured to store a common program
code, and each of the stored plurality of program codes is
executed with the common program code stored in the stor-
age.

9. The image processing system according to claim 7,
wherein each of the stored plurality of program codes is
executed for a print job.

10. The image processing system according to claim 9,
wherein the print job is a job for printing based on data
described in a Page Description Language.

11. The image processing system according to claim 7,

wherein the preceding type process is an analysis process

for receiving and analyzing a figure,

wherein the following type process is an edge extraction

process for extracting an intersection of the figure ana-
lyzed by the preceding type process and a scan line as an
edge,

wherein each of the stored plurality of program codes

includes both of a code for the analysis process and a
code for the edge extraction process, and

wherein the control unit controls each of the first and sec-

ond cores to execute in parallel, based on the code for the
edge extraction process, a different edge extraction pro-
cess.
12. The image processing system according to claim 7,
wherein each of the plurality of following type processes
which is executed using a different one of the results of the
preceding type processes is executable by either the first core
or the second core.
13. A non-transitory computer readable medium storing a
control program code for controlling an image processing
system, the system including a plurality of CPU cores and a
storage configured to store a plurality of program codes, each
program code being used alone for executing a plurality of
preceding type processes and executing, in parallel, a plural-
ity of following type processes each of which is executed
using a different one of results of the preceding type pro-
cesses, the control program code comprising:
instructions of selecting, from among the stored plurality
of program codes, one program code according to a
number of available cores of the system; and

instructions of controlling, based on the selected program
code, at least one core among the available cores to
execute the plurality of preceding type processes, and a
first core and a second core among the available cores
except the at least one core to execute each ofa following
type process which is executed using a result of a first
preceding type process and a following type process
which is executed using a result of a second preceding
type process, in parallel,

wherein a first program code which the selecting selects

from among the plurality of program codes according to

US 9,218,554 B2

11

the number of the available cores being a first number
larger than a second number causes a larger number of
cores among the available cores to execute the plurality
of the preceding type processes than a second program
code which the selecting selects from among the plural-
ity of program codes according to the number of the
available cores being the second number causes.

14. The non-transitory computer readable medium accord-
ing to claim 13, wherein the storage is configured to store a
common program code, and each of the stored plurality of
program codes is executed with the common program code
stored in the storage.

15. The non-transitory computer readable medium accord-
ing to claim 13, wherein each of the stored plurality of pro-
gram codes is executed for a print job.

16. The non-transitory computer readable medium accord-
ing to claim 15, wherein the print job is a job for printing
based on data described in a Page Description Language.

17. The non-transitory computer readable medium accord-
ing to claim 13,

10

15

12

wherein the preceding type process is an analysis process

for receiving and analyzing a figure,

wherein the following type process is an edge extraction

process for extracting an intersection of the figure ana-
lyzed by the preceding type process and a scan line as an
edge,

wherein each of the stored plurality of program codes

includes both of a code for the analysis process and a
code for the edge extraction process, and

wherein, by the instructions of the controlling, each of the

first and second cores is controlled to execute in parallel,
based on the code for the edge extraction process, a
different edge extraction process.

18. The non-transitory computer readable medium accord-
ing to claim 13, wherein each of the plurality of following
type processes which is executed using a different one of the
results of the preceding type processes is executable by either
the first core or the second core.

#* #* #* #* #*

